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The problem studied is that of the determination of the statistlical dlsplace-
ment field characteristics of the stress and strain in an anisotropic micro-
scopically nonhomogeneous elastic body in a macroscoplcally homogeneous state
of strailn. The initial statistically nonlinear boundary value problem 1s
linearized by the small parameter method, and a solution in terms of the sta-
tistical characteristics of the field of elastic modull is given. The case
of statistical isotropy of this fleld is considered.

1., We consider a solid strained anisotropilc, microscopically nonhomoge=-
neous body (e.g. a polycrystalline body) in which the microscopic nonhomo-
geneity has a random character. Hooke's law is written in the form

Tij = Cijlm€im (1.1)

Here T,, 1s the stress tensor, e, 1s the tensor for small stralns, and
Cijim 1s the tensor defining the elastic properties of the medlum. For the
considered microscopically nonhomogeneous body, the components of the tensor
Cijim are random functions of the x, coordinates and the tensor 1tself
determine the random tensor fleld, statistical desecription of which 1s ana-
logous to the description of a tensor of the second rank [1].

Along with the mean‘'value { ¢jj;mpy of the tensor ¢Ciym the moment of
interaction of the values of the tensor field at two points plays a most
important role

i (T, ,2) = (Cijim (Bs2) Corst (%57)Ds  Cijim = Cijim — Cijimd (1.2)

Here and below the angle brackets denote the statistical mean of the cor-
responding quantities. By virtue of the known symmetry of the tensor cijm,
the following conditions hold for the interaction moment (1.2) :

prst prst prst _ prst __ rpst __ rpts stpr
Cijlm = Cjitm = Cjimi = Clmij = Cimij = Cimij == CImij (1.3)

For the case of statlstically homogeneous fleld to which we will limit
our considerations, the mean values {¢jym)> ©Of the field are constant and
the interaction moment (1.2), also called the correlation tensor, will be a
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function of a single vector ¢,
rat . H — 2 1
c?ﬂm - C?j};:n (gs)’ gs = Js L (14)
in which the relation

holds Him (5) = 57 (—E) (1.5)

The strains ¢, are connected with the disclacements w; by the rela-
tions 1 ( 8w, awm)

ém =5 \z,, T o,

(1.6)
We introduce the notation
u=Kwp, v=wW—U, Em=/<lmds Ty,= €im— Eim
oy = (T Py = T;— 6y 1.7
Then, along with {1.6) we have

. __L(aul +3um) _ L(& avm)
Hm = Gz, Bz, )t Tim oz, " 9z,

5 (1.8)

We conslder a body of volume UV bounded by a surface & , in a state of
straln such that g;,, = const. On the assumption of ergodicity of the random

functions ¢y, this means that the body is in a macroscopically homogeneous

state of strain. Then
Uy = EmIm

For the body the dimensions of which are very large in comparison with
the scale of nonhomogeneities of the tensor Cim , Ut < y; on the boundary
of the body; therefore the boundary condition may be written in the form

wy|, = U}, = EimTm, (1.9)

We get the boundary value problem for determination of w; by adding the
equation of equilibrium (in the absence of body forces)

6’(53'/1 82?}' = 0 (‘110)
to Equations (1.1}, (1.6) and (1.9).

We suppose further that the fileld Cijlyn  MAY be représented in the form
Cijtm = {Cijtm > -+ Abijim {athijim = Cijim) (1.11)
where the biﬁm are random restricted functions of the coordinates and g

is a small parameter, not of a random character. Then, aftsr taking account

of (1.7) and (1.8) and of the symmetry of the tensor Cijim, (1.1) may be pre-
sented, in the form

v
1
Tij = ({cijm) + Abizim) (Bzm + 5;;—-) (1.12)
m
From {1.10), (1.12) and (1.7}, (1.9) we obtain the boundary value problem
f'or the determination of the vector

dty, ]
{Cijtmy 3,02, = o, [bi;‘lm (Ezm +

v !
ax?‘ﬂ

)] . o] = (1.13)

Here the macroscopic strains g5, are considered as glven.
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2., By virtue of the randomness of the tensor bijlm and the vector
the boundary value problem (1.13) 1s statistically nonlinear. It 1s linear-
1zed if 1ts solutlon 1s represented in the form of a series in powers of the

small parameter ¢

2 aky, () (2.1)

k=0

By suBstitution of (2.1) into (1.13) and equating coefficients of the
equal powers of o , we find g2 (0
$Cijim) 5—5— a:ch)wm =0, »© I =0 (22)
azvl(l) FE o, (0)
Citm G0~ B, | b (oim + - )] 2 =0  (2.3)
801(" 1)

92y (B) P

CCitm e = — 5o { bij

9 5z 0z, T T 0z, \ Hm

Because of the uniqueness of the boundary value problem (2.2) we have
0 _ 0, and (2.3) is finally written in the form

o ), M| =0 (k=2,3,...)

Uy
92v, 01 ab. .
l ijlm
{Cijtimp 53— = — &im ) vl(l)' =
630 oz, ox. 8
i (2.4)
920,k ) oy, k-1
1 l k —
{Cijimy W a—z; (bijlm ——3’% ) A ls =0 (k=2,3,...)

Relations (2.4) represent in themselves successlve recurrent statistically
linear boundary value problems determining the terms in the expansion (2.1).
By representation of the solutions to the boundary value problems (2.4%)

in terms of a Green tensor (ij, (Zs, Zs!), which 1s one and the same for all

the problems, we have [ 2]

b
vi(l) (xs) = €m g Gin (xsv zsl) 'ﬂl‘m—(x_z d vy

(v)
(2.5)
oy, (51 (g 1)
20 (2,) = S Gin (x5, 2") ,T,ZT [bm'lm (xsl)—axm(—s]d y (k=23,...)
()

The functlons U(lk) (k = 2, 3, ) may be expressed in terms of the ten-

sors Gin and bujem. For example, for viz), we find

aG 1y
0@ (x) = &5 S SGin (s, x5") tp % 1 =) > [Bnjim (%) bprst (257 1dv1dva+

i 25 Ox.10x 2
®) @ " ;o
002G, (x 1 z2) ¢
ip §°'%s
+ &4 % Gin (x5, 1) 3210z 1 3z % [Bnjim (®s1) bprat (2:2)] dvy dos
) (v) iom r
It is.seen from the structure of Formulas (2.5) that the functions u(ik)
for any k are linear functions of the mean strains &;n. We find therefore

for v, (2.1)
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(oo}
i) = o X ol 42 2.6
The quantities (P(::t) (zs) are determined by the Green tensor G, and the

deviation tensor ¢'jiy. for the elastic moduli by virtue of (2.5) and (1.11).
In particular, we have

lst (xs) = S Gin (xs’ xsl)i—Ljsf—(—)d »

()
. 60“0 (zl, 22 5 , ,
@il (@) = S S Gin (s, 22') ax:tl : 523023 [niim (%') Corst (z:")1 dvydve +
(v) (v) o

%G, (=l 2% g
, 1 Ip\7s N, 2
+ S S th (xs, Xs ) W&Z ) [C,n]lm (xs )Cprst (zs )] dvldvg
) (v) !
Having the solution of (2.6) it is easy to find the statistical charac-
teristics of the vector displacements. In partilcular, for the moments of
displacements of the nth order

Vi = 04, (@) <01, (257))

we have
2]
R . k (k ) »n
vil"'ln = Bgt, ** ssn'n . Zk -1 <(Pi,(s‘;:( ) Insn ‘n ('78 )>
ok =

From this we find the second order moments for n = 2

vi; (xs', ) = epren 2 <<P1(,:}) st (P,(seg) (%) (2.7)

K, 1==1

3. We find the statistical characteristics of the stress tensor [1]
R L — 1 . n — :
i = <T”>’ pi'j""in I - <p'ilj| (133 ) o piﬂj" (-133 )> (Pij = Ty —Gij) (3'1)
We proceed from the relations (1.12), which we rewrite in the form
dr, 7,
Ti; = {Cijim) &m + CtJImEIm + Cijimd 57— ax =+ Cijin 6 (32)
We find from (3.2)

, dv, N
Sij = {Cijim) €m + < Cijim 5;—/
m

(3.3)
, ) dr, L or, . or,
Pij = Cijim®im T <ciilm> oz, ' Cijtm oz, < Cijim oz, >
We have from (2.6)
o0
or Ay (=)
| — Ist

EFON - eslq)Is{m' Progm ™ E ;x (3'4)
Tt K- mn

By introduction of the notation

wijsl = Ci’jlmqfs{m (3.5)
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we obtain from (3.3)
055 = (CCyer> - Pyje) Epr Py = MNisify (3.6)
nijsl = cijst + <cijlm> q)lstm + \pijst - <‘pijst>
The nth order moment of the stress tensor (3.1) is written in the form
— 7 1y ... n ‘e
Pigei s, = it @) oMy g0 (87D Bay oo 850
In particular, for n = 2 we have
1.8y
pijkt (xs s Ts ) - <n55pr (xsl) "‘Ikm (x82)> ep?‘sSf (37)

For certain purposes it 1s necessary to establish the connection between
the 2nd order moments of stress and strain

12“ <P” (xsl) pm (033)), 13” <TU (Is ) T;ﬂ (.Zs )>
We get, after transformations and after making use of (3.3) to {3.5)
pijlm = <cijpr> <clmst> Tprst + ( i;?)srt + ’Vf;';ﬁf prsst (3'8)
Here (3 9)

B = Cifor T <Cuien CClana (56 Py (768> + e iy (861) Py (250
Vgr;s;‘t = < ijpr (ZS )wlmsi ($32)> + <cl;nst (xsz) %,-p, (xsl)> T
+ <ci;’1m> «f’;cpm (") Vst (= + Chmien” Prstn (%) ‘?i,-m (%) +
By (@01 Wy (@)D — gy, (@)D Py (22)

The tensors pﬁ%ﬁ and \dﬁﬁt in (3.9) are determined by the Green ten-

sors of the origihal problem and the statistical properties of the elastic
modull filelds ¢iym, in which if the expansion {3.4) is limited to only the
first term, the values of u depend only on the second order moments of the
tensor -Cij, and the values of v on the third or fourth order moments.

If moments of higher order may be neglected, i.e. if the condition

h 1§t Imst
1]’].; ' <i p’u];r (3’1‘0)
holds, then relation (3.8) takes the form
— N Imsd ‘
pi]lm - \Ct’jpr" \c!msé> Tpf‘st + ”L;?)) Sptsst (311)

Condltion (3.10) 1s satisfied, in particular, in case of small microscopilc
nonhomogeneity when the deviations cﬁﬂd of the elastic modull are small
compared with their mean value {¢;;;>, i.e. if

1 Ciji << [<eim |

4, We now assume the body under consideration to be unbounded, and the
field Cijm of elastic modull to be statistically isotropic [1]. In this

case the tensor Cisim willl be the isotropiec tensor

<’ijl.-{> =0 B Gydy o+ ailajk)

where 6,, 1s a unit tensor of the sccond rank and the Green tcnsor Gyx in
(2.5) may be written in explicit ‘orm [ 2]

re oz (IJ —_ J‘jl} (-UJ' bt rJl) (Ik'l)

i =5 o
ka = 83—(!1; [T kmo T
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By using the method expounded by Robertson [3], we find further that for
a statistically isotroplc fleld ¢j) under conditions (1.3) and (1.5), the
correlation tensor (1.4) has the form

Bt (Bs) = c1(p) BibE 4B B pEEsle + (4.2)
-+ 3 (p) (8i 8 EiEpEE sl s+ O3 Bl jEpErEsbt + OprEabiSiE B xE1 4 DatbprEil E4Ge) +
+ ¢3(9) (858 EiEpErEsL e 4 8165 ExELErEsEt + 8;3EiEEpErEsts +
+ 8,158 EpErEsE e + OpsErEiEiE Exlr + OpiBrEabibiBill + OrsbpBibil Bl +
+ 8, EpEsEiE Bt + ca(p) (80 1 EpErEals + 85r05:8:8 8 xE1) +
+ €5 (P) (83,0118 pErEsE1 + 0 EpErEals + 8psbrBik ;561 +
+ 8p107sBi BB 1) + o (P} (8:0prE kEiE sl + 8i0siE Bl pEr +
+ 8, 0prEiE E sttt 8058:E EpEr) + €7 (p) (8:18pslyEiErEs -+ 8ii0piExE1ErEs +
+ 8i8,sEkEiEpbt + 8i 0 ExE1EpEs + 8:40prE BB sEs + 8;40siE 81k pEr +
+ 8:18prEiEEats 1 810sit Eibpbr 4 8,30 pr8iki8sEt 1+ 8;300/8:E Entr +
4 88 prEilEste + 8i8eibiEiEpls + 8BpsEik Erks -+ 8gBpiBiEiErEs +
+ 8408,8:8 EpEi +05,0-18i8EpEs) + cs(P) (855Dpst BiEEL +
+ 8,818 E1ErEs - 8:30reBiEiE 8L + 810 BB 1EPEs + BitdpeliEsE S +
+ 818tk £ Erbs + 0iiBreB ExEpbt + 01br 8 E4EpEs + 0;300s8ik 15 Gl +
+ 8,18 pEEiE ks - B0rekilibpbe + 8,0 Ei8iEp8s + 00pebiliErE -
+ 850 piEiE i ErEs + 8;10,e8iExEpE L 1 80ri8iEiEpEs) T 08 (R) (80 0prEshy +
A 80,8,,05EpEr + 05,0588 kL + 0pr85:818i85) + €10 (p) (8:,05,8ps8rEr +
+ 8:0,,0piErEs + 8,301 8rsEp bt + 0i81y0re5 85 - 8prbaibiytibi -
+ 8,r0si0iE By + 8,058, EiE1 + 8pr0si8,iEiEs) +11 (1) (8;8,:8pr 86k +-
+ 8;0;10s1Epkr + 8118807881 + 8:B;30018, Br 4 818718458481 +
+ G)Js‘sr!él\-[gigj -+ 6p:61~36ij5k§l -+ 'Spt‘srsé;;lgiaj) - €12 (P) (bikﬁjlallsgrgl 4=
+ 8,058 pErEs + 0481, %p8 e + 8:0,18r 5 rEs + 818 ;30psbrEr -
+ 88,8 p18rEs - 8:0;DrsEpli 4 811038, ks + 8,60,8::8 51 -1
- Bpsr ik By + 8,:50,18;,8:%1 -+ 8158, 0188k + 050rbi% B0 -
5 0,8,505 08 By 0,.8,40,:8:81 + 8,.08,:8uEiEg) + 13 (P) 6; 80,50 -
A €12 () (8:810,58,1 = 81,8480 - 8:30,16,,05¢ + 81i6,,8,,050) +
€15 () (8;,8,18,,58r1 + 6:18,18,,6,5 -+ 8:.8,8,.8,¢ - 81:840,.4675)
(2 =E;8;)

In the case of small nonhomogeneity, when expansion (3.4) may be limited
to a single term and when condition (3.10) is fulfilled, the coefficents in
reclations (3.6) and (3.8) connccting the statistical characteristics of the
state of stress and strain as well as those in (2.7) and (3.7), are deters,,
mined only by the Green tensor and by the first two moments (¢ k> and i

of the tensor fleld of the elastlc modull; relations (4.1) and (4.2) permit
their calculation.

We also concider the case where the correlation tensor (1.4) does not
depend on the orientation of the vector 7, and is only a function ol its
modulus p = 1;'5 The above 1s the case related to a strong isotropy of the

[}
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field, ¢y . It has been considered [4] in connection with an investiga-
tion of the elastic modulus of a polycrystalllne body. For a strongly iso=-
tropic field -¢;;,, taking account of the symmetry in (1.3) and (1.5), we

find
olht (9) = Pa (p) 88,0, 8¢ +
~+ha(p) (aiiaklaps‘srt + Giaakléptérs + 61‘1:6J'16Dr53t + 6i16jk6pr631) +
+ P (p) (88710 s0rt + 8:48718,,0r5 + 61183060 + 811848, B 1)
The calculation of the coefficlents entering into relations (3.6) and
(3.8) 1s appreciably simplified 1n the case of strong isotropy. In particu-

lar, if the expansion (3.4) is limited to one term, calculation for WPy000 in
(3.6) gives I

Pijard = — Y330 (Aa + Ysha) it (0)4- 815 qhac ™ (0) (4.3)

nnst

where X, and A, are expressed in terms of the constants y; and u, in
(4.1) by Pormulas

_ B+ e P+ Yo
1= Brpg (Ra 4 2p2) ° Brupa (bg - 2pa)
Relation (4.3) coincides with the result obtained in a different way in

.

A Ag =
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